Performance analysis of solar air conditioning system based on the independent-developed solar parabolic trough collector
Yuehong Bi,
Lifeng Qin,
Jimeng Guo,
Hongyan Li and
Gaoli Zang
Energy, 2020, vol. 196, issue C
Abstract:
In this paper, an independent-developed solar parabolic trough collector (PTC) for solar air conditioning has been adopted in a solar air conditioning system with a three-phase accumulator. The composition and operation strategy of the system are elaborated in detail. In view of the measured data of the solar energy and the cooling load demand of buildings, the reasonable matching design of the solar collector, absorption refrigeration chiller and three-phase accumulator is carried out. On this basis, the dynamic performance of the solar air conditioning system with the independent-developed PTC is analyzed. The calculation and analysis results show that the solar air conditioning system with a three-phase accumulator can continuously and steadily supply cooling for buildings day and night. Cooperative operation of the solar absorption refrigeration with the PTC and the three-phase accumulator can not only improve the efficiency of the parabolic trough collector, but also ensure the high energy storage efficiency of the three-phase accumulator. The average parabolic though collector efficiency is 67.5%, the energy storage efficiency of the three-phase accumulator is 0.8, the solar fraction can reach 82.4%. Based on the economic analysis, the investment of the solar air conditioning system with a three-phase accumulator is acceptable.
Keywords: Solar air conditioning system; Independent-developed solar parabolic though collector; Three-phase accumulator; Dynamic performance; Building cooling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301821
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301821
DOI: 10.1016/j.energy.2020.117075
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().