EconPapers    
Economics at your fingertips  
 

Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope

Pengyuan Shi, Qingjun Zhang, Aiwu Zeng, Youguang Ma and Xigang Yuan

Energy, 2020, vol. 196, issue C

Abstract: The feasibility and effectiveness of the intensified vapor recompression-assisted pressure-swing distillation (PSDVRC) arrangements in different separation sequences are explored with separating a maximum-boiling methanol/diethylamine azeotrope as the specific example. The energy-efficient Heat Exchanger Network Synthesis (HENs) option is used to further improve the possible energy recovery in certain arrangement. The globally optimal arrangement is the intensified self-heat recuperative vapor recompression-assisted PSDVRC-FP-HEN process in the low-pressure column (LPC)-to-high pressure column (HPC) sequence. The reductions of 39.33% (13.93%) in total annual cost, 89.12% (81.95%) in carbon footprints, and the improvement of 116.31% (44.71%) in second-law efficiency can be achieved in comparison with the conventional process, wherein, the data in these brackets represent the economically optimal heat-integrated configuration. And the exergy destruction in each component (Sankey diagram) for all eco-efficiently intensified alternatives are obtained. Result shows that the exergy increase in LPC-to-HPC sequence is higher than that of another sequence, along with the major exergy losses generated in columns, and the distribution of the irreversibility for each individual component in the system is approximately identical when the entropy production analysis and exergy analysis are employed.

Keywords: Pressure-swing distillation; Vapor recompression; Heat exchanger network synthesis; Thermodynamic analysis; Maximum-boiling azeotrope (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302024
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302024

DOI: 10.1016/j.energy.2020.117095

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302024