Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system
Esa Dube Kerme,
Jamel Orfi,
Alan S. Fung,
Elias M. Salilih,
Salah Ud-Din Khan,
Hassan Alshehri,
Emad Ali and
Mohammed Alrasheed
Energy, 2020, vol. 196, issue C
Abstract:
This paper presents a thermodynamic analysis of a poly-generation system powered by solar thermal energy using parabolic trough collectors. The proposed system consists of an organic Rankine cycle, a multiple effect distillation and an absorption cooling unit. The performance analysis of the solar system is conducted for different configurations: power generation only, cogeneration power and cooling, cogeneration power and desalination, and poly-generation. The effects of turbine inlet temperature and pump inlet temperature on the energetic and exergetic system performance as well as the net power output and total exergy loss of the system are examined. In addition, exergetic parameters, including system total exergy loss, fuel depletion ratio and improvement potential were analyzed. The study reveals that increasing the turbine inlet temperature increases the performance while it reduces the total exergy destruction rate of the system. The result of the study also shows that the two main sources of exergy destruction are the solar thermal collector and desalination unit; with 49.3% of the input exergy (76% of the total exergy loss) destructed in the collector while 9.6% of the inlet exergy (14.9% of the total exergy loss) is destroyed in the desalination system. The overall improvement potential of the system was found to be 64.8%.
Keywords: Poly-generation system; Parabolic trough solar collector; Performance analysis; Exergy destruction; Exergetic efficiency; Solar energy; Fuel depletion ratio (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302577
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302577
DOI: 10.1016/j.energy.2020.117150
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().