A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions
Meysam Alizamir,
Sungwon Kim,
Ozgur Kisi and
Mohammad Zounemat-Kermani
Energy, 2020, vol. 197, issue C
Abstract:
In this study, the potential of six different machine learning models, gradient boosting tree (GBT), multilayer perceptron neural network (MLPNN), two types of adaptive neuro-fuzzy inference systems (ANFIS) based on fuzzy c-means clustering (ANFIS-FCM) and subtractive clustering (ANFIS-SC), multivariate adaptive regression spline (MARS), and classification and regression tree (CART) were used for forecasting solar radiation from two stations of two different locations, Turkey and USA. Wind speed, maximum air temperature, minimum air temperature and relative humidity were used as inputs to the developed models. For accurate evaluation of performance of models, four statistical indicators, root mean squared error (RMSE), coefficient of correlation (R), mean absolute error (MAE) and Nash–Sutcliffe efficiency coefficient (NS) were employed to evaluate accuracy of the developed models. Comparison of results showed that the GBT model performed better than the MLPNN, ANFIS, MARS, and CART in modeling solar radiation. The average RMSE of MLPNN, ANFIS-FCM, ANFIS-SC, MARS and CART models was decreased by 0.26%, 1.5%, 0.51%, 2.5%, and 19.34% using GBT model at Fairfield Station, 4%, 1.37%, 0.24%, 4.12%, and 24.4% at Monmouth Station, 11.99%, 48.7%, 41.6%, 8.23%, and 33.41% at Antalya Station, 11%, 54.8%, 51.9%, 19.65%, and 37.1% at Mersin Station, respectively. The overall results indicated that the GBT model could be successfully applied in forecasting solar radiation by using climatic parameters as inputs.
Keywords: Solar radiation; Gradient boosting tree; Artificial neural network; Adaptive neuro fuzzy inference system; Classification and regression tree (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220303467
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303467
DOI: 10.1016/j.energy.2020.117239
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().