EconPapers    
Economics at your fingertips  
 

Process integration of chemical looping combustion with oxygen uncoupling in a biomass-fired combined heat and power plant

Petteri Peltola, Jussi Saari, Tero Tynjälä and Timo Hyppänen

Energy, 2020, vol. 210, issue C

Abstract: Bioenergy with CO2 capture and storage (BECCS) has been introduced as a promising negative emission technology (NET) that opens up the possibility of producing power and heat with negative CO2 emissions. By combining 1.5D reactor modelling with flowsheet simulation of a complete full-scale cogeneration plant, this study assesses the applicability and potential of an advanced CO2 capture technology, namely chemical looping with oxygen uncoupling (CLOU), for CO2 capture from a biomass-fired combined heat and power (CHP) plant generating electricity, district heat (DH) at 75–90 °C supply and 45 °C return temperatures, and process steam at 10 and 4.5 bar(a) pressures. Nordic wood (50% wet-basis moisture) is used as fuel. The key performance indicators of the CLOU-integrated CHP plant were quantified and compared with those of a non-CCS reference plant. Part-load operation at reduced DH loads was considered. At 100% fuel load, the CLOU plant captured 99.0% of the CO2 from the combustion of biomass and still achieved a net efficiency of 80.1%LHV, a value very close to that of the reference plant without CO2 capture or flue gas condensation (81.1%LHV). Depending on the fuel load, the specific negative CO2 emissions from the CLOU plant ranged from 439 to 504 kgCO2/MWh.

Keywords: Bioenergy with carbon capture and storage; Chemical looping combustion; Chemical looping with oxygen uncoupling; Combined heat and power; Process integration; Simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220316583
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316583

DOI: 10.1016/j.energy.2020.118550

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316583