Experimental study of stratified swirl flame dynamics in a model gas turbine combustor
Zhihao Zhang,
Xiao Liu,
Yaozhen Gong,
Yang Yang,
Zijia Tang,
Gang Liu,
Fuquan Deng,
Jialong Yang and
Hongtao Zheng
Energy, 2020, vol. 211, issue C
Abstract:
The flame structure and dynamic response of stratified swirl flames are investigated using a stratified premixed swirl burner. The change of swirl intensity is achieved by swirlers with different swirl angles. Stratification of the flow and mixtures is established by varying the bulk air flow rates and mixture equivalence ratios between the inner and outer annulus. Depending on operating conditions, four different flame structures are stabilized in the combustor: A V-shaped flame (V-flame), a stratified flame (S-flame), a lifted flame (L-flame) and a special plate-shaped flame (P-flame). Thermoacoustic instabilities are then investigated. Generally, the frequency and intensity of the pressure and heat release pulsation are coupled. The amplitude of the pressure and heat release pulsation are all sensitive to the swirl intensity, air split ratio (ASR) and stratification ratio (SR). Large amplitude limit cycles are found in the strong swirl, high ASR and high SR flame. The dominant frequency of pulsation is about 100 Hz in the cases with SR < 1, when SR > 1, the dominant frequency fluctuates between 400 Hz and 500 Hz. The hysteresis phenomenon is also observed in current experiments. Different flame structures can occur in the same operating condition by varying the operating routines.
Keywords: Swirl flame; Stratified flame; Flame structure; Combustion instability; Hysteresis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220318077
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318077
DOI: 10.1016/j.energy.2020.118699
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().