EconPapers    
Economics at your fingertips  
 

Development of a hythane based cogeneration system integrated with gasification and landfill subsystems

Fatih Sorgulu and Ibrahim Dincer

Energy, 2021, vol. 215, issue PA

Abstract: In this study, a hythane (which is known as a blend of methane and hydrogen) based combined cycle integrated with gasification and landfill subsystems (digesters) is proposed to provide electricity and heat for buildings. The system is analyzed for the various wastes and evaluated in terms of energy, exergy and the environmental impact. The parametric studies are conducted for the ambient temperature and fractions of hydrogen in hythane. By designing this kind of system, it is aimed to provide an effective solution to dispose of the waste. Biomass-based energy systems have many advantages in terms of energy demand and environmental issues. Not only supply heat and electricity but also dispose of wastes are very critical issues. In Istanbul, the biggest city in Turkey, more than 18,000-ton municipal waste is collected and treated per day. This enormous amount of waste needs to recover for useful outputs, such as fuels, electricity, heating, and cooling. The overall energy and exergy efficiencies of the integrated system are calculated as 76.30% and 35.17%, respectively. The required mass flow rate of 0.13 kg/s and the lower heating value of 52,153 kJ/kg hythane are calculated to generate 3.5 MW electricity and 1.52 MW heat rate to the residential area.

Keywords: Hydrogen; Hythane; Methane; Biomass; Exergy; Sustainable energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220322167
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322167

DOI: 10.1016/j.energy.2020.119109

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220322167