EconPapers    
Economics at your fingertips  
 

Experimental performance of a parabolic trough collector system for an industrial process heat application

Panayiotis K. Ktistis, Rafaela A. Agathokleous and Soteris A. Kalogirou

Energy, 2021, vol. 215, issue PA

Abstract: Manufacturing is responsible for 60% of the fuel consumption in Cyprus and the industrial sector is the second biggest fuel consumer, mainly for steam production. Thus, the use of parabolic trough collector (PTC) systems for the production of steam or hot water can be a promising solution for the industrial sector. This study presents the first industrial PTC system in Cyprus, installed at the biggest soft drinks factory. The system consists of 288 m2 of PTC, a steam generator and concrete thermal energy storage (CTES) in order to keep the system dispatchable. To achieve that, two operation strategies are developed which are controlled automatically by the main processor of the system. The first strategy is enabled when there is a steam demand and the second when the energy can be stored directly to the CTES. Both strategies are tested, and it is shown that under Strategy 1 the PTC system can produce 940 litters of steam per day, and under Strategy 2 it can store 107.3 kWhth. In two months period tests, it is proved that it can supply the required amount of steam to the factory even when solar radiation is low, with the support from the CTES.

Keywords: PTC; Steam production; Solar collector; Concrete storage (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220323951
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220323951

DOI: 10.1016/j.energy.2020.119288

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220323951