EconPapers    
Economics at your fingertips  
 

Planning renewable energy introduction for a microgrid without battery storage

Obara, Shin’ya, Shoki Fujimoto, Katsuaki Sato and Yuta Utsugi

Energy, 2021, vol. 215, issue PB

Abstract: Microgrids with renewable generation can improve environmental impact on remote islands. This paper presents a case study of a plan for a microgrid that addresses the inconsistency of renewable energy with governor control and the inertial force of a diesel generator. This paper aims to design of a microgrid without a battery storage system. The case study was modeled to determine the maximum amount of renewable generation that can be introduced while maintaining stable frequency and voltage within the transmission grid. Data from Japan’s Teuri and Yagishiri islands were used. The findings of our study revealed that wind and photovoltaic power can account for about 20% of the generation in such a microgrid while maintaining frequency stability. Adjustment of the moment of inertia of diesel generators effectively compensates for the fluctuating output of renewable sources at small remote islands. The cost of such a microgrid could be recovered within 16–17 years.

Keywords: Remote island; Microgrid; Renewable energy; Facility planning; Electricity quality (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220322830
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322830

DOI: 10.1016/j.energy.2020.119176

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:215:y:2021:i:pb:s0360544220322830