A comparative exploration of thermal, radiative and pollutant emission characteristics of oil burner flame using palm oil biodiesel-diesel blend fuel and diesel fuel
S.H. Pourhoseini,
M. Namvar-Mahboub,
Ebrahim Hosseini and
Ashkan Alimoradi
Energy, 2021, vol. 217, issue C
Abstract:
The lack of petroleum resources and environmental problems of petroleum fuels have led to growing interest in biodiesel fuels. This study compares diesel fuel and palm oil biodiesel-diesel blend fuel in terms of their effect on the thermal, radiative and pollutant emission characteristics of the flame of an oil burner. The blend fuel consisted of diesel fuel and palm oil biodiesel, which was synthesized by transesterification reaction. In the experiments, the same mass flow rates of B20 palm oil biodiesel-diesel blend fuel and diesel fuel were separately combusted in a laboratory furnace. Then, we measured the flame temperature, the total and luminous radiations of the flame and the concentrations of CO and NOx pollutant emissions. The results indicate that the blend fuel, compared with diesel fuel, produces a voluminous flame. Further, although the flame of blend fuel has a lower temperature than diesel fuel flame does, blend fuel produces a higher concentration of intermediate soot particles in the flame reaction zone. This phenomenon, in comparison with the case of diesel fuel, increases the IR wavelengths emitted from flame and enhances the average radiation heat transfer of flame from 2080 to 5094 W/m2. Also, the use of blend fuel instead of diesel fuel enhances the luminosity of flame and decreases the NOx emission significantly from 33 to 11 ppm.
Keywords: Palm oil biodiesel-diesel blend fuel; Flame volume; Temperature; IR wavelengths; Radiation; NOX emission (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220324452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324452
DOI: 10.1016/j.energy.2020.119338
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().