EconPapers    
Economics at your fingertips  
 

Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power

Wenchao Fang, Sheng Chen, Jingying Xu and Kuo Zeng

Energy, 2021, vol. 217, issue C

Abstract: The particle-to-sCO2 heat exchanger plays a significant role in coupling the high temperature particle receiver to supercritical carbon dioxide Brayton cycle in concentrating solar power plants. In this work, heat transfer characteristics of a shell-and-plate, moving packed-bed heat exchanger are numerically evaluated through continuum modeling. It is found that the local heat transfer coefficient h for different input parameters have a similar shape: h quickly drops at the thermal entry region and then remains as a constant. The asymptotic value of h increases with the particle flow velocity but decreases with particle channel width. A universal correlation between the local heat transfer coefficient and the particle flow properties in terms of the dimensionless Nusselt number is then proposed. Moreover, by calculating the overall heat transfer coefficient and performing a sensitivity analysis, we show that the heat exchanger has a two-regime behavior: in the regime with low particle flow rate, the performance mostly depends on the particle flow velocity and the channel width, and is restricted by the small amount of energy stored in the particle flow. In the high flow rate regime, the effective conductivity of the particle flow becomes the determining factor on the performance of the heat exchanger.

Keywords: Moving bed heat exchanger; Continuum model; Thermal energy storage; Concentrating solar power; Particle receiver (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220324968
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324968

DOI: 10.1016/j.energy.2020.119389

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324968