EconPapers    
Economics at your fingertips  
 

Waste heat recovery from a data centre and 5G smart poles for low-temperature district heating network

A. Khosravi, T. Laukkanen, V. Vuorinen and S. Syri

Energy, 2021, vol. 218, issue C

Abstract: The city of Espoo, Finland is planning to develop Kera as a green suburb with high level of energy efficiency and low CO2 emissions, using a high share of renewable energy and recycled or reused energy. For reaching this target, in this study, renewable energy resources such as solar, wind and waste heat are investigated for the study region. Two different technologies comprising heat pump (HP) and heat-only boiler (HOB) are investigated to retrieve waste heat from a data centre and LuxTurrim5G smart poles to use in a low-temperature district heating network. We investigate various scenarios to supply the required energy for the HP (which receives electricity from the electricity market, photovoltaic (PV) system, wind turbine (WT) and hybrid PV/WT; 4 scenarios) and HOB (which works with electricity, forest fuel wood, biogas, ammonia, wood pellets and industry wood residue; 6 scenarios). We found that the heat pump scenario is an efficient and cost-effective way to retrieve waste heat from the data centre and 5G smart poles with an LCOE of 3.192 ¢/kWh if electricity is produced by the PV system, and 3.516 ¢/kWh when the heat pump receives its electricity only from the electricity market.

Keywords: Low temperature district heating network; Waste heat recovery; Ejector expansion heat pump; Renewable energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220325755
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325755

DOI: 10.1016/j.energy.2020.119468

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:218:y:2021:i:c:s0360544220325755