EconPapers    
Economics at your fingertips  
 

The flexural-wave-based lens design for energy focusing via the trajectory prediction and the phase modulation

Peng Li, Zhenghua Qian, Bin Wang, Iren E. Kuznetsova and Vladimir Kolesov

Energy, 2021, vol. 220, issue C

Abstract: A plane lens that has the ability of focusing the flexural wave emitting from a point source into a focal point has been successfully designed by two methods, i.e., the trajectory prediction and the phase modulation. For the trajectory prediction, the lens makes the flexural waves along different paths arriving at the focal point simultaneously. For the phase modulation, the lens is designed via letting the waves producing the same phase at the theoretical focal position. Correspondingly, two media with the flexural wave velocity respectively larger and smaller than that in the matrix plate are adopted to construct the lens. The results show that the two methods are available because the wave energy at the actual focal positions has been respectively enlarged nearly 20 and 22 times after passing through the lens, compared with the case of a flat plate without any lenses. Meanwhile, both of lenses based on the two methods are broadband, and can work efficiently in the regions centered the designed frequency. Actually, not limited by the wave focusing phenomenon, the two methods presented in this paper are generalized applicable, which is exemplified by steering the flexural wave propagation at a random refraction angle.

Keywords: Wave focusing; Timoshenko beam; Velocity control; Phase modulation; Abnormal refraction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220328231
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328231

DOI: 10.1016/j.energy.2020.119716

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328231