Developments and applications of porous medium combustion: A recent review
Abhisek Banerjee and
Diplina Paul
Energy, 2021, vol. 221, issue C
Abstract:
Global attention on fuel efficiency, reduced emissions and the ability to operate with a wide range of fuels having low calorific values, continues to drive research and development in the field of porous medium combustion (PMC). PMC is a modern technology where combustion occurs within voids of the solid porous matrix. Researchers worldwide have developed PMC technology for various applications: from classical fields like turbines, internal combustion engines, heat exchangers, oil and gas extraction devices to modern areas like food processors, thermoelectric generators, etc. Though the ability of PMC to internally regenerate heat makes it suitable for a wide range of applications, yet its development is challenged by bottlenecks in flame propagation, flammability limits, operating efficiency, etc. This study has compiled global PMC research for application in small-scale energy-efficient systems. Following the general background, fundamental and governing parameters modulating PMC are presented here. Numerous significant and recent developments in the fundamental challenge of flame stabilization in PMC are discussed. This review focuses on the research conducted so far in the field of porous medium combustion to enable its wide application. Finally, this review discusses the various challenges and scope of future research essential in the development of PMC technology.
Keywords: Porous medium; Excess enthalpy flames; Combustion; Applications; Superadiabatic combustion (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221001171
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001171
DOI: 10.1016/j.energy.2021.119868
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().