EconPapers    
Economics at your fingertips  
 

Experimental study of kerosene supersonic combustion with pilot hydrogen and fuel additive under low flight mach conditions

Feiteng Luo, Wenyan Song, Jianping Li, Wenjuan Chen and Yaosong Long

Energy, 2021, vol. 222, issue C

Abstract: Reliable ignition and efficient combustion are critical for low flight Mach starting stage of dual-mode scramjet. In this paper, liquid kerosene ignition and combustion with pilot hydrogen and fuel additive were experimentally studied in a model supersonic combustor with clean air inflow, under the simulated conditions of flight Mach 3.8–4.0. The selected composite additive is mainly composed of about 20%-vol low-carbon small-molecular unsaturated alkanes and about 80%-vol diethylmethoxyborane. It is found that, under the low-temperature supersonic conditions, either RP-3 kerosene or with additives can all be ignited by the pilot hydrogen flame of least ERH = 0.065–0.076, only fuel additive effects seem to be still not enough for auto-ignition. Self-sustaining flame stabilization and combustion were realized with the tandem dual-cavity flame-holders, an appropriate amount of hydrogen addition can significantly promote the liquid kerosene combustion heat release without inlet disturbing. Enhancement of kerosene supersonic combustion and faster/higher temperature rises with the fuel additive of certain concentration were experimentally validated, and the positive effects showed more significant at a lower equivalence ratio of ERK = 0.43, in which the combustion enhancement induced mode transition from transonic to subsonic is found due to the 20%-vol additive. The additive effects might be greatly depended on the concentration in a nonlinear way when reducing concentration from 20%-vol to 10%-vol, a small concentration of 10%-vol additive did not produce an obvious enhancement effect. A small amount of hydrogen addition or an appropriate proportion of additive can improve the combustor performance, while too high total equivalence ratios or large amount of hydrogen addition tend to lower combustion efficiency.

Keywords: Supersonic combustion; RP-3 kerosene; Pilot hydrogen; Fuel additive; Clean air; Comparative experiment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221001079
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001079

DOI: 10.1016/j.energy.2021.119858

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001079