Linking socio-economic aspects to power system disruption models
Justinas Jasiūnas,
Peter D. Lund,
Jani Mikkola and
Liinu Koskela
Energy, 2021, vol. 222, issue C
Abstract:
Increasing reliance on uninterrupted electricity supply against emerging threats such as climate change and cyberattacks calls for higher resilience of societies against power disruptions. A better understanding of social and economic impacts during these disruptions would be important for planning of resilience improvements. However, traditional energy system models rarely include these aspects. This paper presents an integrated framework containing a geospatial power system operation model, capable of emulating system component failures and restoration according to environmental conditions, with a link to spatial social and economic values such as population, economic activity, critical services and facilities. The framework was applied for analyzing the effects of uncontrolled and controlled power outages for two windy winter weeks in Finland. This case illustrated how controlled optimization could reduce the societal costs of such outage by shifting power shortage to regions where such costs are lower and in part by shifting the costs to other factors.
Keywords: Resilience; Energy security; Extreme weather; Power system; Outage costs; Socio-economic impacts (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221001778
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001778
DOI: 10.1016/j.energy.2021.119928
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().