EconPapers    
Economics at your fingertips  
 

Prediction of de-NOx performance using monolithic SCR catalyst under load following operation of natural gas-fired combined cycle power plants

Kotaro Nakamura, Takehiko Muramatsu, Takashi Ogawa and Takao Nakagaki

Energy, 2021, vol. 227, issue C

Abstract: As variable renewable energy expands, natural gas-fired combined cycle (NGCC) power plants are expected to provide important functions for grid stabilization such as quick start-up, shutdown, and load following. However, transient operation of NGCC significantly increases the NO2 content of NOX in the exhaust gas and reduces de-NOx performance of selective catalytic reduction (SCR) with ammonia injection. The denitrification performance of SCR depends on transient mechanisms such as adsorption of ammonia in the catalyst and redox reactions on the catalyst surface. This study evaluates whether de-NOX performance can be maintained during expected operational fluctuations for grids with a high penetration of variable renewable energy. Simulations involving a modified de-NOX reaction scheme have been developed and validated for various NGCC exhaust gas compositions expected in both steady state and transient operation using a commercial, monolithic SCR catalyst. Results show that sudden output load changes cause a decrease in SCR catalyst performance due to changes in gas composition and temperature outpacing the adsorption/desorption of ammonia in the catalyst. It was found that adjusting the injection amount of ammonia several minutes prior to the output load change was effective in maintaining de-NOX performance.

Keywords: Flexible operation; Ammonia slip; Dynamic modelling; Grid stabilization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221006320
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006320

DOI: 10.1016/j.energy.2021.120383

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006320