The role of demand response in the future renewable northern European energy system
J.G. Kirkerud,
N.O. Nagel and
T.F. Bolkesjø
Energy, 2021, vol. 235, issue C
Abstract:
Increasing demand response (DR) from households, industry and tertiary sector may provide substantial flexibility in renewable-based energy systems, but the deployment of DR is currently limited. This study examines the future economic potential DR in the renewable rich northern European region, and also analyses power markets impacts of large-scale DR deployment in the region. For the quantifications, the energy system model BALMOREL is used, modified to include a detailed temporal modelling of available DR potentials. Results show that among the DR options analysed, space heating and water heating provide the highest shares of loads shifted. The overall demand response potential is particularly high in Norway and Sweden, due to wide-spread electric space- and water heating. Low variable costs make these DR applications economically feasible for deployment, despite high supply-side flexibility provided by regulated hydro power. DR may contribute to peak shaving of up to 18.6% of total peak load in 2050. Revenues from DR-application yield very different results depending on techno-economic parameters, potentials and the price volatility in the various analysed market areas. Results show an insignificant change in CO2 emissions between scenarios with and without demand response.
Keywords: Demand response; Energy system modelling; Load shifting; Load shedding; Nordic power system; System flexibility (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422101584X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:235:y:2021:i:c:s036054422101584x
DOI: 10.1016/j.energy.2021.121336
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().