EconPapers    
Economics at your fingertips  
 

Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle

Chunyang Qi, Yiwen Zhu, Chuanxue Song, Guangfu Yan, Feng Xiao, Da Wang,, Xu Zhang, Jingwei Cao and Shixin Song

Energy, 2022, vol. 238, issue PA

Abstract: As the core technology of hybrid electric vehicles (HEVs), energy management strategy directly affects the fuel consumption of vehicles. This research proposes a novel reinforcement learning (RL)-based algorithm for energy management strategy of HEVs. Hierarchical structure is used in deep Q-learning algorithm (DQL-H) to get the optimal solution of energy management. Through this new RL method, we not only solve the problem of sparse reward in training process, but also achieve the optimal power distribution. In addition, as a kind of hierarchical algorithm, DQL-H can change the way of exploration of the vehicle environment and make it more effective. The experimental results show that the proposed DQL-H method realizes better training efficiency and lower fuel consumption, compared to other RL-based ones.

Keywords: Deep reinforcement learning; Energy management; Hybrid electric vehicle; Hierarchical reinforcement learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221019514
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019514

DOI: 10.1016/j.energy.2021.121703

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019514