EconPapers    
Economics at your fingertips  
 

Wind farm wake modeling based on deep convolutional conditional generative adversarial network

Jincheng Zhang and Xiaowei Zhao

Energy, 2022, vol. 238, issue PB

Abstract: Modeling of wind farm wakes is of great importance for the optimal design and operation of wind farms. In this work a surrogate modeling method for parametrized fluid flows is proposed for wind farm wake modeling, based on the state-of-the-art deep learning framework i.e. deep convolutional conditional generative adversarial network. Based on the proposed method and the data generated by high-fidelity large eddy simulations, a novel wind farm wake model is developed. The developed model is first validated against high-fidelity data and the results show that it achieves accurate, efficient, and robust prediction of wind turbine wake flow, at all the streamwise locations including both near wake and far wake, for both streamwise and spanwise velocity components, and at the cases with different inflow wind profiles. Then an extensive parametric study is carried out and the results show that the model generalizes well to unknown flow scenarios. Furthermore, a case study for a wind farm is investigated by the developed model. The prediction results are then compared with high-fidelity simulations, showing that the model can predict the wind farm wake flow (including both the streamwise and spanwise velocity fields) very well.

Keywords: Deep learning; Generative adversarial network (GAN); Surrogate modeling; Wake interaction; Wind farm wake (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221019952
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019952

DOI: 10.1016/j.energy.2021.121747

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019952