Novel approach to energy-efficient flexible job-shop scheduling problems
Nikolaos Rakovitis,
Dan Li,
Nan Zhang,
Jie Li,
Liping Zhang and
Xin Xiao
Energy, 2022, vol. 238, issue PB
Abstract:
In this work, we develop a novel mathematical formulation for the energy-efficient flexible job-shop scheduling problem using the improved unit-specific event-based time representation. The flexible job-shop is represented using the state-task network. It is shown that the proposed model is superior to the existing models with the same or better solutions by up to 13.5 % energy savings in less computational time. Furthermore, it can generate feasible solutions for large-scale instances that the existing models fail to solve. To efficiently solve large-scale problems, a grouping-based decomposition approach is proposed to divide the entire problem into smaller subproblems. It is demonstrated that the proposed decomposition approach can generate good feasible solutions with reduced energy consumption for large-scale examples in significantly less computational time (within 10 min). It can achieve up to 43.1 % less energy consumption in comparison to the existing gene-expression programming-based algorithm.
Keywords: Scheduling; Mixed-integer programming; Flexible job-shops; Energy-efficient; Unit-specific event-based (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221020211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020211
DOI: 10.1016/j.energy.2021.121773
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().