Effects of coal particle size on the two-phase flow and slagging performance in a swirl burner
Neng Fang,
Pan Zhang,
Weiliang Wang,
Qian Wang,
Junfu Lyu,
Hai Zhang and
Guangxi Yue
Energy, 2022, vol. 238, issue PB
Abstract:
Swirl burner is widely used in coal-fired boilers. Coal particle size is an important factor affecting the two-phase flow as well as the combustion performances of a swirl burner. A bench-scale experiment with CFD simulation was conducted with full burner complexity. The results show that asymmetry of the particle phase is gradually weakened as the particle size increases, opposite to the variation trend of the continuous flow field in a hot state. The asymmetry of the particle phase is much more affected by the asymmetry of the secondary air jet flow than that of the primary air jet flow. As the particle size increases within a certain range, the combustibility of pulverized coal decreases, which enhances the asymmetry of the continuous flow field. When the particle size increases more than 50 μm, an increase in the concentration of incomplete combustion particles in the side recirculation zone around the burner occurs, intensifying the tendency of slagging. Thus, controlling the pulverized coal particle size below 50 μm is a considerable choice to improve combustion efficiency and avoid slagging.
Keywords: Swirl burner; Particle size; Two-phase flow; Asymmetry; Slagging (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221020454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020454
DOI: 10.1016/j.energy.2021.121797
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().