EconPapers    
Economics at your fingertips  
 

State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression

Yajun Zhang, Yajie Liu, Jia Wang and Tao Zhang

Energy, 2022, vol. 239, issue PB

Abstract: Accurate state-of-health (SOH) estimation for lithium-ion batteries is of great significance for future intelligent battery management systems. This study proposes a novel method combining voltage-capacity (VC)-model-based incremental capacity analysis (ICA) with support vector regression (SVR) for battery SOH estimation. For accurate and efficient capture of IC curves, 18 VC models are first compared, and then, suitable models are selected for two types of batteries with different chemistries, enabling multitype health features to be obtained by parameterizing the VC models. After correlation analysis of these extracted health features with the reference battery capacity, the SVR algorithm is adopted to construct SOH estimation models. Finally, four aging datasets are employed for validation of the proposed method. The experimental results show that the SVR models achieve high accuracy in SOH estimation, i.e., the respective mean absolute errors (MAEs) and root mean square errors (RMSEs) of all batteries are limited to within 1.1%. Moreover, the method is robust against different initial aging statuses and cycle conditions of the batteries: after migration and fine-tuning, both the MAEs and RMSEs can be confined to within 2.3% by utilizing the established SVR models.

Keywords: Lithium-ion batteries; State-of-health; Capacity model; Incremental capacity analysis; Support vector regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221022349
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221022349

DOI: 10.1016/j.energy.2021.121986

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221022349