EconPapers    
Economics at your fingertips  
 

Prediction of industrial power consumption in Jiangsu Province by regression model of time variable

Haoran Ma

Energy, 2022, vol. 239, issue PB

Abstract: Industry has always been an important driving force to promote social and economic development, and the development of industry is inseparable from energy consumption. In the process of modern production, more and more modern advanced equipment is put into use, and the main power source of these equipment is electricity. However, the production of electricity is limited by conditions. Therefore, the main purpose of this paper is to simulate and forecast the industrial power consumption of Jiangsu Province through the nonlinear transformation of time variables, so that the industrial enterprises in Jiangsu can reasonably arrange the next power demand and ensure the smooth progress of industrial activities. The final research results show that the time series regression prediction model proposed in this paper can effectively simulate and predict the results of industrial power consumption, with an accuracy of 1.02 %.

Keywords: Industrial power consumption; Time series; Nonlinear transformation; Forecast (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023410
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023410

DOI: 10.1016/j.energy.2021.122093

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023410