EconPapers    
Economics at your fingertips  
 

Trajectory, driving forces, and mitigation potential of energy-related greenhouse gas (GHG) emissions in China's primary aluminum industry

Shupeng Li, Liping Niu, Qiang Yue and Tingan Zhang

Energy, 2022, vol. 239, issue PB

Abstract: As the world's largest primary aluminum producer, China's primary aluminum industry (PAI) faces a huge challenge in reducing greenhouse gas (GHG) emissions. However, detailed research on presenting the historical trajectory of GHG emissions from China's PAI and identifying the main driving factors affecting its changes has not been completed thus far. This study quantifies the GHG emission trajectory of China's PAI from 1990 to 2018 and identifies the key driving factors affecting its changes. The results show that the total GHG emissions from China's PAI from 1990 to 2018 increased by approximately 18 times, reaching 481 Tg CO2-eq in 2018, of which 69 %, 17 %, and 14 % were electricity-related, fuel-related, and process-related, respectively. Additionally, the production activity effect is the main factor driving the increase in GHG emissions; however, the energy intensity and energy emission factor effects can effectively reduce GHG emissions. Based on this, scenario analysis is used to evaluate the GHG emission mitigation potential of China's PAI by 2030. According to our analysis, policy suggestions for mitigating the GHG emissions in China's PAI are proposed, including reducing the energy intensity, promoting clean energy use, controlling the production capacity, and decarbonizing electricity.

Keywords: GHG emissions; LMDI method; Scenario analysis; Primary aluminum industry; China (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221023628
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023628

DOI: 10.1016/j.energy.2021.122114

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023628