EconPapers    
Economics at your fingertips  
 

Impedance modeling for polymer electrolyte membrane fuel cells by combining the transient two-phase fuel cell and equivalent electric circuit models

Jiseung Lee, Hassan Salihi, Jaeseung Lee and Hyunchul Ju

Energy, 2022, vol. 239, issue PC

Abstract: Proton exchange membrane fuel cell (PEMFC) are actively replacing fossil fuel-based energy systems in commercial applications. Evaluation of cell performance and degradation is critical and usually performed by analyzing the polarization curve and/or Nyquist plot. The polarization test provides an insight into the entire cell, whereas electrochemical impedance spectroscopy (EIS) is used to obtain the Nyquist plot that facilitates the assessment of individual voltage losses occurring in the inner components of a PEMFC. This paper highlights the degradation assessment of PEMFCs using a coupled one-dimensional (1-D) two-phase PEMFC model and Randles-TLM equivalent circuit model. The 1-D model includes a micro-scale catalyst layer (CL) model to more accurately assess electrochemical catalyst activity and mass transport inside the agglomerated porous structure of CL. This model is utilized to estimate key input parameters for various PEMFC operating conditions and degradation scenarios, which are then applied to the equivalent circuit model. The coupled model simulations successfully reproduce both experimental polarization curves and Nyquist plots for various PEMFC conditions. This study enhances the understanding of underlying physical phenomena occurring during long-term PEMFC operations.

Keywords: PEM fuel Cell; Numerical model; Equivalent circuit model; Polarization curve; Nyquist plot (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221025421
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025421

DOI: 10.1016/j.energy.2021.122294

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025421