In-situ measurement of humidity distribution and its effect on the performance of a proton exchange membrane fuel cell
Junjie Zhao,
Zhengkai Tu and
Siew Hwa Chan
Energy, 2022, vol. 239, issue PD
Abstract:
Understanding the internal water distribution in proton exchange membrane fuel cell (PEMFC) is critical to the development of high-performance PEMFCs. In this study, the cathode flow field is divided into 9 areas, and the relative humidity under different conditions is measured in-situ by using microsensors embedded in the cathode flow field plate. Polarization curves are measured and electrochemical impedance spectroscopy is carried out under different conditions. The results show that the relative humidity has a significant effect on the internal resistance of PEMFCs. When the inlet gas is not humidified, too high of a temperature will lead to low relative humidity and membrane dehydration. Increasing pressure and cathode humidification can alleviate this problem. However, the relative humidity of the outlet area is close to 100% when the cathode back pressure is 100 kPa, and a too high relative humidity will result in flooding in the cathode channel. Moreover, the degree of corrosion of the carbon support in the catalyst is closely related to the water concentration in the cathode, and the water management downstream of the flow field is particularly important.
Keywords: In-situ; PEMFC; Performance; Relative humidity; Water distribution (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221025184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025184
DOI: 10.1016/j.energy.2021.122270
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().