Experimental study of effect of slickwater fracturing on coal pore structure and methane adsorption
Jun Li,
Qiming Huang,
Gang Wang,
Enmao Wang,
Shuang Ju and
Cunli Qin
Energy, 2022, vol. 239, issue PE
Abstract:
Driven by high pressure, slickwater may intrude into the pores of coal seams, causing changes in the pore structure, and ultimately affecting the flow of Coalbed Methane (CBM). In this study, slickwater prepared with different concentrations of polyacrylamide (PAM) is used to soak coal samples from Inner Mongolia under high pressure to explore the effect of slickwater fracturing on coal seam pores. To study the evolution characteristics of the pore structure of coal samples treated with slickwater, low temperature nitrogen adsorption experiments and methane adsorption experiments are combined. The experimental results show that under the action of external pressure, slickwater invades the pore structure of coal, resulting in a significant decrease in pore volume and specific surface area. Furthermore, with the increase of the pressure and viscosity of the slickwater, the slickwater residue blocks the micropores in the coal pore structure more severely. The damage to methane adsorption by residue is more serious than that to nitrogen adsorption, reflecting that more residue remains in the micropores of coal samples. The development of a gel breaker suitable for slickwater can promote the degradation of PAM polymer molecules and the reduction of residual liquid viscosity after fracturing, and improve the flowback effect. This may be an effective way to reduce reservoir damage.
Keywords: Coalbed methane; Slickwater; Pore structure; Sorption (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221026700
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026700
DOI: 10.1016/j.energy.2021.122421
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().