EconPapers    
Economics at your fingertips  
 

Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry

Yuanbo Zhang, Yutao Zhang, Yaqing Li, Xueqiang Shi and Bo Che

Energy, 2022, vol. 240, issue C

Abstract: In order to accurately determine the ignition temperature (Ti) of coal, Coal spontaneous combustion (CSC) process was tested by a simultaneous thermal analyzer. Next, the abrupt change point of the differential derivative thermogravimetric curve (DDTG) of coal after the high adsorption temperature was taken as the Ti of CSC. Besides, variations of kinetics and thermodynamics during the CSC before and after the Ti were calculated. It was found that the mass loss, heat releases and gaseous products of coal changed slowly before the Ti and surged sharply after the Ti. The coal at ignition temperature was in thermodynamic equilibrium with low activity. However, when the temperature was greater than Ti, the aromatic hydrocarbons in coal begin to decompose, resulting in the increased of active sites and the release of volatiles, and the coal enters an irreversible combustion stage. At this time, upward trends were obtained for the apparent activation energy, pre-exponential factor, enthalpy change, and entropy change, while a gradual decrease was observed for the Gibbs free energy change. Moreover, reaction intensity between oxygen and coal would be increased due to increased of active sites in the coal and enhanced of volatiles release under a slower heating rate.

Keywords: Coal spontaneous combustion; Ignition temperature; Differential derivative thermogravimetry; Kinetic parameters; Thermodynamic parameters (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221027420
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027420

DOI: 10.1016/j.energy.2021.122493

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027420