EconPapers    
Economics at your fingertips  
 

Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market

D. Hadjout, J.F. Torres, A. Troncoso, A. Sebaa and F. Martínez-Álvarez

Energy, 2022, vol. 243, issue C

Abstract: The economic sector is one of the most important pillars of countries. Economic activities of industry are intimately linked with the ability to meet their needs for electricity. Therefore, electricity forecasting is a very important task. It allows for better planning and management of energy resources. Several methods have been proposed to forecast energy consumption. In this work, to predict monthly electricity consumption for the economic sector, we develop a novel approach based on ensemble learning. Our approach combines three models that proved successful in the field, namely: Long Short Term Memory and Gated Recurrent Unit neural networks, and Temporal Convolutional Networks. The experiments have been conducted with almost 2000 clients and 14 years of monthly electricity consumption from Bejaia, Algeria. The results show that the proposed ensemble models achieve better performance than both the company's requirements and the prediction of the traditional individual models. Finally, statistical tests have been carried out to prove that significance of the ensemble models developed.

Keywords: Time series; Forecasting; Deep learning; Ensemble learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221033090
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033090

DOI: 10.1016/j.energy.2021.123060

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033090