EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis of biomedical waste plasma gasification

Regina Franciélle Silva Paulino, Alexei Mikhailovich Essiptchouk, Lucas Pamplona Cardozo Costa and José Luz Silveira

Energy, 2022, vol. 244, issue PA

Abstract: Plasma gasification technology is one of the environmentally correct techniques that can be applied in the processing of biomedical waste (BW). This work aims to present thermodynamic studies with a simulation of the plasma gasification of BW produced in Brazil. Through thermodynamic analysis is determined the best operating point of the reactor, which corresponds to the temperature where the energy yield of syngas is maximum, and consequently the syngas chemical composition and its lower heating value (LHV). Finally, it is estimated the electrical power required in the BW processing and the potential for electricity generation through the burning of syngas in an internal combustion engine (ICE) and gas turbine set (GTS), and the capacity to supply the necessary energy in the plasma gasifier. As conclusion, the best operating point for the processing of typical Brazilian BW is at a temperature of 1040 K with a maximum gas energy yield of 2.25. For this temperature the syngas consists of 63.65 wt% of carbon monoxide and 5.35 wt% of hydrogen and LHV of 13.47 MJ/kg. Finally, for processing 1 kg/s of BW are required 6292 kW of electrical power, and the maximum electricity production potential is 3132 kW in ICE and 3758 kW in GTS.

Keywords: Plasma gasification; Biomedical waste; Thermodynamic analysis; Electricity; Syngas (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221028498
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028498

DOI: 10.1016/j.energy.2021.122600

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221028498