Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios
Alina Walch,
Xiang Li,
Jonathan Chambers,
Nahid Mohajeri,
Selin Yilmaz,
Martin Patel and
Jean-Louis Scartezzini
Energy, 2022, vol. 244, issue PB
Abstract:
Shallow ground-source heat pumps (GSHPs) are a promising technology for contributing to the decarbonisation of the energy sector. In heating-dominated climates, the combined use of GSHPs for both heating and cooling increases their technical potential, defined as the maximum energy that can be exchanged with the ground, as the re-injection of excess heat from space cooling leads to a seasonal regeneration of the ground. This paper proposes a new approach to quantify the technical potential of GSHPs, accounting for effects of seasonal regeneration, and to estimate the useful energy to supply building energy demands at regional scale. The useful energy is obtained for direct heat exchange and for district heating and cooling (DHC) under several scenarios for climate change and market penetration levels of cooling systems. The case study in western Switzerland suggests that seasonal regeneration allows for annual maximum heat extraction densities above 300 kWh/m2 at heat injection densities above 330 kWh/m2. Results also show that GSHPs may cover up to 63% of cooling and 55% of heating demand for individual GSHPs in 2050 in Switzerland, which increases to 87% and 85% if DHC is used. The regional-scale results may serve to inform decision making on strategic areas for installing GSHPs.
Keywords: Shallow geothermal energy; Potential estimation; Seasonal regeneration; District heating and cooling; Climate change scenarios (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544221033351
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544221033351
DOI: 10.1016/j.energy.2021.123086
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().