Heat balance modelling and simulation of non-mixing buffer tank design for hydronic heating applications
Simon Li,
Denering Berrio and
Yanda Fang
Energy, 2022, vol. 244, issue PB
Abstract:
The purpose of this paper is twofold. First, it aims to develop a theoretical model for a non-mixing buffer tank system for hydronic heating applications. The traditional buffer tanks often involve water mixing where the boiler's hot water is mixed with the system's return water. This practice reduces the temperature differences (ΔT) through the boilers and the in-space heating equipment, bringing in concerns of their thermal performance. To address this concern, the non-mixing buffer tank system is designed with a movable separation plate in a buffer tank, which can store supply hot water and return cold water separately. The theoretical model of the non-mixing design explores the dynamics of water temperatures and the interactions of system components. As the second purpose, this paper then conducts a simulation study to compare both mixing and non-mixing designs under the same heating loads. As a result, it is observed that the non-mixing design can achieve better system efficiency (e.g., 86.7% versus 82.0% for low heating loads) due to better average boiler's efficiency (90.5% versus 86.8%) and longer cycle period (37.85 min vs. 9.27 min). In addition, the non-mixing design allows better control of supply water temperature, which can better support the outdoor reset control of boilers.
Keywords: Hydronic heating systems; Heat balance modelling; Buffer tank; Water mixing; System design and simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222001165
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222001165
DOI: 10.1016/j.energy.2022.123213
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().