Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant
Heng Chen,
Jiarui Li,
Tongyu Li,
Gang Xu,
Xi Jin,
Min Wang and
Tong Liu
Energy, 2022, vol. 245, issue C
Abstract:
A novel medical-waste-to-energy design combining plasma gasification (treating medical waste) and municipal solid waste (MSW) incineration has been developed. In the integrated system, the syngas generated by the plasma gasification of medical waste is first burned and drives the gas turbine for power generation, subsequently, the gas turbine exhaust is taken to heat the live steam and feedwater of the MSW incineration plant, improving the power cycle of the incineration plant. Consequently, medical waste can be converted into electricity efficiently in the meantime of harmless management. The hybrid design was investigated by multiple approaches including energy analysis, exergy analysis, and economic analysis. It is found that the energy efficiency and exergy efficiency of medical-waste-to-electricity can reach up to 37.83% and 34.91% with a net total power of 4.24 MW yielded from medical waste, while the net power generated from MSW is considered fixed. Besides, the proposed medical-waste-to-electricity project has a short dynamic payback period of 3.75 years and the relative net present value can achieve 45,239.90 k$. These results demonstrate that the novel concept is efficient, feasible, and advantageous, which is promising to be implemented in the field of waste-to-energy.
Keywords: Medical waste; Municipal solid waste; Plasma gasification; Incineration; Integrated waste-to-energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222000597
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:245:y:2022:i:c:s0360544222000597
DOI: 10.1016/j.energy.2022.123156
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().