Atomistic insight into oil displacement on rough surface by Janus nanoparticles
Yuanhao Chang,
Senbo Xiao,
Rui Ma,
Zhiliang Zhang and
Jianying He
Energy, 2022, vol. 245, issue C
Abstract:
Janus nanoparticles (NPs) hold great potential in enhanced oil recovery (EOR), although the mechanism remains unclear. In the study, the displacement dynamics of trapped oil in the rough channel by Janus NPs are unraveled through atomistic modeling. The results indicate that Janus NPs with large polar faces significantly recover more oil from the nano-pocket (nano groove of the surface). The structure of adsorbed NPs on the wall of oil-trapping nano-pockets strongly causes the local wettability alteration, which ultimately determines the oil recovery. The crucial events in oil recovery by Janus NPs, termed ‘adsorption invasion process’, are identified, which comprise of anchoring onto the surface, pinning at the edge, and entering inside the pocket. The controlling factors are further detailed, including identification of the residual oil, displacement pressure, and the geometry of the oil-water interface inside nano-pockets. With the proposed analysis, the “huff-n-puff” mode is verified as the optimized application method for Janus NPs. For the first time, our results bring to light the dynamic wettability alteration on the rough surface by Janus NPs from atomistic insights. The findings reveal the intrinsic EOR mechanism of Janus NPs, which could guide the design and application of Janus NPs in EOR.
Keywords: Janus nanoparticles; Oil recovery; Molecular dynamics simulation; Rough surface; Wettability alteration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222001670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001670
DOI: 10.1016/j.energy.2022.123264
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().