Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax
Yuzhu Chen,
Xiaojian Hu,
Wentao Xu,
Qiliang Xu,
Jun Wang and
Peter D. Lund
Energy, 2022, vol. 250, issue C
Abstract:
Advanced solar driven tri-generation systems are highly relevant to reduce emissions and increase energy security. Here, solar collectors and photovoltaics are coupled to a tri-generation system to produce multiple final energy forms simultaneously for an office building. The excess solar electricity is employed for cooling/heating through a power-to-heat conversion employing thermal energy storage. Comprehensive optimization is performed to maximize the energy, environmental, and economic benefits, and the carbon tax is included to monetize the emissions. A coupled decision-making method is then used to choose the ideal scheme from the optimized sets of system configuration accompanied with a sensitivity analysis against key parameters. Compared to the conventional system, the proposed system improves the energy performance by 41.4% and the environmental benefits by 41.7% with the highest solar energy utilization rate. The economic performance improves in the best case by 14.4% only, but with the lowest utilization rate of solar energy. The ideal solution covers 30%, 54%, and 62% of the electricity, cooling, and heating loads, respectively, and the corresponded energy, environmental, and economic performance improves by 29.1%, 34.6%, and 7.7%, respectively. The sensitivity analysis shows that the economic performance is more sensitive to the electricity price than to the carbon tax.
Keywords: Solar driven trigeneration; Multi-objective optimization; Carbon tax; Coupling decision-making method; Power-to-heat; Thermal storage (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222006594
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:250:y:2022:i:c:s0360544222006594
DOI: 10.1016/j.energy.2022.123756
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().