Optimal design and performance improvement of an electric submersible pump impeller based on Taguchi approach
Ling Bai,
Yang Yang,
Ling Zhou,
Yuanzhe Li,
Yu Xiao and
Weidong Shi
Energy, 2022, vol. 252, issue C
Abstract:
Electric submersible pump (ESP) is the core artificial lift equipment to pump production oil from underground or deep sea to the surface. Its energy efficiency significantly affects global oil market and energy consumption. To explore the effects of the impeller meridian profile on the hydraulic performance, a typical multi-stage ESP with medium specific speed was taken as the research object. Based on the statically determinate control of the shroud and hub profiles, eight parameters of the impeller meridian profile were selected as the key factors. By taking head and efficiency as optimization targets, 27 schemes were designed according to the Taguchi approach. The effect analysis method was employed to determine the primary and secondary order of the parameters. The linear relationship between the meridional parameters and the optimization target was analyzed based on regression analysis. The results show that the design of the intersection line of the front and rear shrouds in the impeller meridian has great effects on the ESP performance. The optimal model shows a significant improvement on both of efficiency and head compared with the original model. The head increases 3.5% and the efficiency increases 6.1%. This study provides new inspiration to optimize the hydraulic design of ESPs to achieve higher efficiency and lower energy consuming.
Keywords: Electric submersible pump; Meridian profile; Taguchi approach; Hydraulic performance; Numerical simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222009355
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009355
DOI: 10.1016/j.energy.2022.124032
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().