EconPapers    
Economics at your fingertips  
 

Wind data introduce error in time-series reduction for capacity expansion modelling

Lucas Elias Kuepper, Holger Teichgraeber, Nils Baumgärtner, André Bardow and Adam R. Brandt

Energy, 2022, vol. 256, issue C

Abstract: Shares of renewable energy are rapidly increasing in many countries due to emissions policies and declining prices. Investment planning for future renewable deployment often relies on optimization models. Memory usage and solving time restrict these models, leading to tradeoffs in the treatment of temporal complexity, spatial complexity, and physical representation. A common approach is to reduce the temporal complexity of models. Reducing temporal complexity is often achieved by using time-series aggregating and modelling representative periods instead of a complete time series. But the impacts of such approaches are still poorly understood, especially for very low emissions systems with high shares of variable renewable energies. In this paper, the impacts of using time-series aggregation methods on optimal system design are investigated. It is found that the negative impact of time-series aggregation increases for lower emissions. It is also identified that modelling wind time-series data with representative days introduces this negative impact primarily and that representing wind time-series data with representative days decreases the reliability of supply defined as unserved load (0.05%–18.0%), introduces a bias in installed capacity (−31.15% to +12.2%), and underestimates total system cost (2.5%–44.9%). These effects are largest in cases with the strongest emission constraints. When designing low emissions systems with a high share of variable renewable energies, it is recommended not to use time-series aggregation to create representative days for wind power output. This paper contributes an Open Source analysis framework containing time-series aggregation and capacity expansion that should be applied when testing future time-series aggregation methods to reduce the identified negative impacts.

Keywords: Energy system; Optimization; Linear programming; Time-series aggregation; Emission reduction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222013706
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:256:y:2022:i:c:s0360544222013706

DOI: 10.1016/j.energy.2022.124467

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222013706