A novel real-time energy management strategy based on Monte Carlo Tree Search for coupled powertrain platform via vehicle-to-cloud connectivity
Xiao Yu,
Cheng Lin,
Peng Xie and
Sheng Liang
Energy, 2022, vol. 256, issue C
Abstract:
To improve the performance and efficiency of the energy management strategy used in electric vehicles equipped with a dual-motor coupled powertrain platform, this study proposes a systematic real-time search approach via vehicle-to-cloud (V2C) connectivity to reduce the battery degradation and electrical consumption by control working mode and split torque. To be specific, the Monte Carlo Tree Search (MCTS) is employed to search for optimal control sequence in the velocity feasible range in the cloud platform, considering battery loss and electric cost. The logic of time and velocity range updating is proposed as the solution for abrupt traffic changes. To evaluate the effectiveness of the proposed method, a rule-based and an online DP (Dynamic Programming) -based strategy is developed as the baseline approach. Meanwhile, the assessment conditions include standard cycles following power noise and real-world driving cycles. Finally, actual vehicle and hardware-in-the-loop (HIL) experimental results demonstrate that the proposed method significantly outperforms other strategies, the average total cost is 0.36 USD/km, and the improvements are 12.9% and 11.4% compared to the rule-based and online DP-based approaches, respectively.
Keywords: Energy management; Monte Carlo tree search; Vehicle-to-cloud connectivity; Electric vehicle; Coupled powertrain platform (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222015225
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015225
DOI: 10.1016/j.energy.2022.124619
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().