EconPapers    
Economics at your fingertips  
 

High robustness energy management strategy of hybrid electric vehicle based on improved soft actor-critic deep reinforcement learning

Wenjing Sun, Yuan Zou, Xudong Zhang, Ningyuan Guo, Bin Zhang and Guodong Du

Energy, 2022, vol. 258, issue C

Abstract: As a hybrid electric vehicle (HEV) key control technology, intelligent energy management strategies (EMSs) directly affect fuel consumption. Investigating the robustness of EMSs to maximize the advantages of energy savings and emission reduction in different driving environments is necessary. This article proposes a soft actor-critic (SAC) deep reinforcement learning (DRL) EMS for hybrid electric tracked vehicles (HETVs). Munchausen reinforcement learning (MRL) is adopted in the SAC algorithm, and the Munchausen SAC (MSAC) algorithm is constructed to achieve lower fuel consumption than the traditional SAC method. The prioritized experience replay (PER) is proposed to achieve more reasonable experience sampling and improve the optimization effect. To enhance the “cold start” performance, a dynamic programming (DP)-assisted training method is proposed that substantially improves the training efficiency. The proposed method optimization result is compared with the traditional SAC and deep deterministic policy gradient (DDPG) with PER through the simulation. The result shows that the proposed strategy improves both fuel consumption and possesses excellent robustness under different driving cycles.

Keywords: Energy management strategy; Deep reinforcement learning; Soft actor critic; Munchausen reinforcement learning; Prioritized experience replay (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017091
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017091

DOI: 10.1016/j.energy.2022.124806

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017091