A molecular dynamics study of evaporation of multicomponent stationary and moving fuel droplets in multicomponent ambient gases under supercritical conditions
Yifei Gong,
Xiao Ma,
Kai Hong Luo,
Hongming Xu and
Shijin Shuai
Energy, 2022, vol. 258, issue C
Abstract:
The evaporation of a six-component fuel droplet under supercritical conditions is investigated using molecular dynamics (MD) simulations. The focus here is on effects of multicomponent ambient gases and the relative motion between the droplet and the ambient. The ambient pressure ranges from 8 MPa to 36 MPa and the ambient temperature ranges from 750 K to 3600 K. In the lower range of the temperature and pressure, the average displacement increment (ADI) per fuel atom gradually increases with time and the classic evaporation is observed. In the higher range of the temperature and pressure, the ADI profile has a unimodal distribution with time and the diffusive mixing between the droplet and the ambient gases dominates. Based on the ADI profile of fuel atoms, a criterion (τ0.9P) for mode transition from evaporation to diffusion is proposed. Among the ambient gases investigated, the mode transition is the most difficult in the nitrogen ambient but the easiest in combustion exhaust gases. For multicomponent fuel droplets close to or in diffusion mode, with higher relative velocities, the relative difference between evaporation rates for light/heavy fuel components is reduced. This study demonstrates that supercritical conditions alone are insufficient for mode transition of evaporation.
Keywords: Multicomponent mixing system; Fuel droplet evaporation; Supercritical conditions; Transition criterion; Molecular dynamics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017418
DOI: 10.1016/j.energy.2022.124838
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().