EconPapers    
Economics at your fingertips  
 

Performance of solid state hydrogen storage assisted standalone polygeneration microgrids for various climatic zones of India

Rakesh Sharma, S. Srinivasa Murthy, Pradip Dutta and Badri S. Rao

Energy, 2022, vol. 258, issue C

Abstract: In stand-alone microgrids, by employing hydrogen storage coupled with fuel cell, multiple outputs such as electricity, heat, water, and fuel, can be achieved. This study presents an approach to optimize the size of different components of a solar photovoltaic field based microgrid configured with electrolyzer, fuel cell, hydrogen storage and battery bank. The optimum configuration is based on maximizing the utilization of electricity produced by the solar photovoltaic field. Two performance parameters, namely, Unmet Electric Load (fUL) and Excess Electricity (fEX) are defined. The monthly and annual performance of the microgrid is studied for diverse climatic conditions with five climatic zones across six Indian locations as example. As is obvious, the polygeneration microgrid gives the best performance at mountainous zone due to abundant solar radiation. The thermal effects due to sorption and desorption reactions of metal hydride hydrogen storage and fuel cell exhaust provide more than 50% of thermal load in each zone. Even though the optimized configuration can serve the electrical load demand of the different zones, the benefits of polygeneration are more pronounced for mountainous, humid subtropical and arid climatic zones, in that order.

Keywords: Stand-alone microgrid; Solar photovoltaics; Hydrogen storage; Fuel cell; Climatic zone; Polygeneration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222017728
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017728

DOI: 10.1016/j.energy.2022.124869

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017728