Electrospray characteristics and cooling performance of dielectric fluid HFE-7100
Haojie Xu,
Junfeng Wang,
Bin Li,
Kai Yu,
Hai Wang,
Jiameng Tian and
Bufa Li
Energy, 2022, vol. 259, issue C
Abstract:
Electrospray (ES) cooling is a promising route of efficient heat removal for electronic components with powerful cooling capacity, a small liquid supply, and precise temperature control. In this study, we experimentally investigated the electrohydrodynamic (EHD) disintegration and ES cooling performance of the dielectric fluid HFE-7100. The stainless-steel capillary nozzle was connected to a high voltage direct current (DC) power supply, whereas the hot copper surface was grounded. A high-speed camera was used to capture the spray morphology of the coolant. The results indicated that a small amount of ethanol significantly improved the charging performance of HFE-7100 by increasing the liquid electrical conductivity. An uncharged column liquid jet was stretched into a thin liquid film by the EHD forces, generating numerous ultrafine droplets along the lower edge. The ES cooling heat flux was increased by about 2.2 times compared with the neutral condition. In addition, the influences of the applied voltage, flow rate, spray height, liquid subcooling, and ethanol concentration on the ES cooling capacity were discussed. Finally, correlations of the ES cooling heat transfer based on the Reynolds number, Weber number, Prandtl number, electric Weber number, Jacob number, and normalized surface temperature were established.
Keywords: Spray cooling; Electrospray; Electrohydrodynamic; Heat transfer; Dielectric fluid (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222019673
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019673
DOI: 10.1016/j.energy.2022.125072
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().