A combined power cycle using refuse incineration and LNG cold energy
T Miyazaki,
Y.t Kang,
A Akisawa and
T Kashiwagi
Energy, 2000, vol. 25, issue 7, 639-655
Abstract:
The objectives of this paper are to develop a combined power generation cycle using refuse incineration and LNG cold energy, and to conduct parametric analysis to investigate the effects of key parameters on the thermal and exergy efficiencies. The combined cycle consists of an ammonia–water Rankine cycle with refuse incinerator and a LNG cold energy cycle. The combined cycle is compared with the conventional steam Rankine cycle. It was found that the thermal and the exergy efficiencies of the combined cycle were 1.53 and 1.43 times higher than those of the conventional cycle, respectively. The ammonia condensing temperature, turbine inlet and outlet pressures and overall conductance (UA) of the condenser are considered as the key parameters. The thermal and the exergy efficiencies increase with increasing the turbine inlet pressure. As the turbine outlet pressure increases, the thermal efficiency of the combined cycle decreases while the exergy efficiency increases. The present model can be applied to obtain optimum conditions of the key parameters for performance improvement of the combined cycle.
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544200000025
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:25:y:2000:i:7:p:639-655
DOI: 10.1016/S0360-5442(00)00002-5
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().