Energy and exergy analysis of supercritical/transcritical CO2 cycles for water injected hydrogen gas turbine
Yinke Qi and
Diangui Huang
Energy, 2022, vol. 260, issue C
Abstract:
This paper investigated the supercritical/transcritical carbon dioxide cycles for water injected hydrogen gas turbine with the advantages of zero carbon emission, low pollution, high efficiency, low cost and so on. This paper selected several typical combined cycles from more than a dozen layouts studied by our team. We constructed a thermodynamic energy and exergy analysis model and verified it with the experimental models from GE. The maximum energy efficiency and its corresponding exergy efficiency that each layout can achieve are obtained after parameter sensitivity analysis, water mixing research and exergy analysis. It can be found that the combined cycle energy efficiency decreases as the water-hydrogen ratio increases. The component with the largest exergy loss is the combustor, accounting for 23.58%. And the transcritical CO2 dual recuperated combined cycle is the best layout with the combined cycle energy efficiency of 64.39% and the combined cycle exergy efficiency of 62.96%. The research done in this paper can provide a basis for the design of next-generation gas turbine.
Keywords: Gas turbine; Waste heat recovery; Supercritical/transcritical CO2 cycle; Thermodynamic energy analysis; Thermodynamic exergy analysis; Zero carbon emission (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222018321
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018321
DOI: 10.1016/j.energy.2022.124931
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().