Residential load shifting in demand response events for bill reduction using a genetic algorithm
Bruno Mota,
Pedro Faria and
Zita Vale
Energy, 2022, vol. 260, issue C
Abstract:
Flexible demand management for residential load scheduling, which considers constraints, such as load operating time window and order between them, is a key aspect in demand response. This paper aims to address constraints imposed on the operation schedule of appliances while also participating in demand response events. An innovative crossover method of genetic algorithms is proposed, implemented, and validated. The proposed solution considers distributed generation, dynamic pricing, and load shifting to minimize energy costs, reducing the electricity bill. A case study using real household workload data is presented, where four appliances are scheduled for five days, and three different scenarios are explored. The implemented genetic algorithm achieved up to 15% in bill reduction, in different scenarios, when compared to business as usual.
Keywords: Demand response; Distributed generation; Flexibility; Genetic algorithm; Load shifting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222018771
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018771
DOI: 10.1016/j.energy.2022.124978
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().