EconPapers    
Economics at your fingertips  
 

Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life

Qiao Xue, Junqiu Li and Peipei Xu

Energy, 2022, vol. 261, issue PA

Abstract: The machine learning (ML) based methods show great promise for the online battery capacity prediction. However, the feasibility and simplicity of indispensable feature extraction are both challenging to existing ML based methods, which restrict the implementation in electric vehicle usages. To reduce the computational burden and simultaneously enhance the accuracy of prediction results, this paper proposes a ML based approach for swift capacity prediction leveraging fractional charging voltage segments. A total number of 21 voltage feature segments (VFSs) are intercepted with different voltage ranges to analyze the influence of voltage intervals on the capacity prediction. Meanwhile, three advanced ML models including random forest regression (RFR), relevance vector machine (RVM) and Gaussian process regression (GPR) are meticulously designed to build a mapping function between the intercepted VFSs and battery capacity. The battery capacity prediction can be attained subsequently based on the established matched relationship using the VFS captured in real-time. The experimental and contrastive results show that the best model can accurately predict battery capacity through whole cycle life with the maximum average relative error of only 1.95%. This work emphasizes the application potential of combining straightforward and reliable feature with ML algorithms for online battery capacity prediction.

Keywords: Lithium-ion battery; Swift capacity prediction; Machine learning; Charging voltage segment (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222021004
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021004

DOI: 10.1016/j.energy.2022.125210

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021004