EconPapers    
Economics at your fingertips  
 

Study on the combustion characteristics of bituminous coal modified by typical inorganic acids

Guanhua Ni, Haoran Dou, Zhao Li, Chuanjie Zhu, Gongshuai Sun, Xiangming Hu, Gang Wang, Yixin Liu and Zhenyang Wang

Energy, 2022, vol. 261, issue PA

Abstract: Acid fracturing technology is applied to increase the permeability of coal seams to promote gas extraction, but the effects of acid solutions on coal combustion cannot be ignored. This paper focuses on HF, HCl, and HNO3. The Bagchi method determines the mechanism function of each nonisothermal TG stage of acidified coal. Combining FTIR, TG-DTA, and KTA, this paper studies the combustion performance of acidified coal from the perspectives of the coal molecular structure evolution, combustion phenomenon, and kinetics. The results show that inorganic acids can destroy C=O in coal, resulting in the carbonyl groups in the HF, HCl, and HNO3 samples decreasing to 21%, 35%, and 0% of that in the RAW samples, respectively. Inorganic acid significantly enhances the reaction rate and thermal effect of combustion stage and improves the comprehensive combustion performance of coal, and the effect is in the order of HF > HNO3>HCl. Inorganic acids change the most likely mechanism function of initial weight loss stage. The oxidation increase of the HNO3 sample is greater than the corrosion weight loss, resulting in a corrosion ratio of −1.74%. HF and HCl reduce the activation energy of oxidation weight gain stage and increase the spontaneous combustion tendency of coal samples.

Keywords: Corrosion ratio; FTIR; Bagchi method; Apparent activation energy; Spontaneous combustion tendency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222021041
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021041

DOI: 10.1016/j.energy.2022.125214

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021041