NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach
H.W. Zhou,
Z.L. Liu,
J.C. Zhong,
B.C. Chen,
J.W. Zhao and
D.J. Xue
Energy, 2022, vol. 261, issue PA
Abstract:
Quantitative characterization of the spatial distribution, content and heterogeneity of fracture and pore structure (FPS) in coal reservoirs under confining pressures and axial compressive loads is significant for the engineering of coal bed methane. A novel online observation approach that combines nuclear magnetic resonance imaging with triaxial loading techniques is employed to achieve the visualization and full-scale quantitative characterization of the evolution of FPS in coals in the laboratory. The relationship between the stress states and FPS evolution was formulated. The results show that the spatial distribution of the FPS evolution process of coal samples can be divided into four stages: initial pore and fracture compaction closure, pore and fracture stable growth, pore and fracture unstable growth, and failure stages. As the deviatoric stress increases, the content of the adsorption pores, the heterogeneity of the adsorption space, and the gas adsorption capacity of coal samples gradually increase. In contrast, the seepage pore and fracture content as well as the permeability of coal samples decrease first and then increase. The heterogeneity of the seepage space of coal samples initially increases and then decreases. The maximum compression of seepage space and increase of adsorption space are 4.742% and 14.743%, respectively.
Keywords: Nuclear magnetic resonance imaging; Coalbed methane; Triaxial loading; Pore and fracture structure; Fractal method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222021818
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021818
DOI: 10.1016/j.energy.2022.125297
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().