Prediction method of key corrosion state parameters in refining process based on multi-source data
Jianfeng Yang,
Guanyu Suo,
Liangchao Chen,
Zhan Dou and
Yuanhao Hu
Energy, 2023, vol. 263, issue PA
Abstract:
Corrosion problems have threatened long-term safe and stable operation of refining units. At present, refining enterprises mainly use corrosion monitoring and detection to identify equipment corrosion states, which has the shortcomings of narrow identification scope and high cost. The data-driven method avoids these problems, and has the advantage of efficiently predicting corrosion states to support corrosion management decisions. This paper, based on multi-source data, proposes a method focusing on the prediction about key corrosion parameters and establishes prediction models on critical parts of refining unit. Firstly, the application of demand-oriented corrosion prediction method is proposed. Then, according to the process operation parameters and medium analysis data of atmospheric tower overhead circuit, the regression prediction models based on RF are established. Meanwhile, after outlier detection by iForest, the model's parameters are optimized by SOS. In the limited real data, the optimized model achieves the best prediction with RMSE of 0.00611, MAE of 0.00513, and R2 of 0.918, and realizes the mining of corrosion parameter sensitivity. Finally, a variety of models are compared. The prediction method proposes in this paper have generalization performance, which can serve as an instruction for equipment safety management and hidden dangers identification.
Keywords: Refining unit; Multi-source data mining; Corrosion prediction; Random forest (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422202480X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pa:s036054422202480x
DOI: 10.1016/j.energy.2022.125594
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().